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ABSTRACT: Faults formed by shearing of joint zones in sandstone contain
fine-scale features that cannot be represented explicitly in large-scale flow simu-
lations. Upscaled models are, therefore, required for reservoir engineering compu-
tations. These models attempt to capture fine-scale effects through equivalent
permeabilities that are computed from the underlying fine-scale characterization. In
this paper the impact of several different local boundary conditions on the calculated
equivalent permeability is assessed. Pressure–no-flow, periodic and mirror-periodic
boundary specifications are considered. The resulting coarse-scale permeability
tensors are shown to be highly dependent on the local boundary conditions used in
the models. In cases with through-going high-permeability features, pressure–no-
flow and mirror-periodic boundary conditions provide upscaled permeabilities that
correctly capture global flow characteristics. Periodic boundary conditions, by
contrast, are more suitable for systems lacking through-going high-permeability
features. This sensitivity to boundary conditions calls into question the robustness of
the equivalent permeability for the general case and suggests that dominant
through-going features would best be modelled explicitly. In addition, due to the
very small thickness and high permeability of some through-going structural features
(e.g. slip surfaces), globally upscaled models are inadequate for the modelling of
transport. To address these issues, a ‘partial upscaling’ method – removing the
through-going high-permeability features from the fine model, upscaling to a coarse
grid and then reintroducing the high-permeability features back into the coarsened
model – is adopted. This procedure is shown to provide coarse models that give
accurate predictions for both flow and transport.
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INTRODUCTION

Recent outcrop-based characterizations of fault zones system-
atically describe features down to the millimetre-scale (Myers
1999; Myers & Aydin 2004). Before these highly detailed
models can be used for flow simulations, some type of
coarsening or upscaling procedure must be applied. The goal of
upscaling is to replace the fine-scale model with a coarsened
model that preserves the flow and transport properties of the
fine model. A variety of upscaling methodologies exist, includ-
ing both numerical flow simulation techniques (e.g. Durlofsky
1991; Pickup et al. 1994) and analytical or power averaging
approaches (e.g. Deutsch 1989). Thorough reviews of various
upscaling methodologies can be found in Wen & Gomez-
Hernandez (1996) and Renard & de Marsily (1997).

In this paper, a finite-difference solution of the local single-
phase flow equation is used to calculate upscaled permeability
tensors. This work builds on a recent study (Jourde et al. 2002)
and further explores the effects of boundary conditions on

upscaled fault permeabilities. Toward this goal, a number of
different boundary specifications, namely pressure–no-flow,
periodic, and mirror-periodic conditions, are considered. The
appropriate boundary condition is shown to depend mainly on
the degree of large-scale connectivity of the dominant high-
permeability features. This suggests that the upscaling of certain
types of through-going features (e.g. slip surfaces and joints that
are longer than the block dimensions) does not, in general,
provide robust coarse-scale models.

To circumvent this difficulty, a modified upscaling procedure
is described. In this approach, which shares some similarities
with earlier techniques (e.g. Durlofsky et al. 1997; Lee et al.
2001), the dominant through-going features are first removed
and the remaining ‘background’ heterogeneities are then up-
scaled. This upscaling is much less sensitive to the boundary
conditions since the dominant features are no longer homo-
genized. These features are, however, reintroduced into the
coarse-scale model, where they are represented explicitly. This
procedure is shown to provide accurate and robust coarse-scale
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models for both flow and transport through blocks that include
a fault zone.

A number of previous investigators developed techniques
for estimating the large-scale flow properties of fault zones. For
example, Shipton et al. (2002) calculated upscaled permeabilities
by applying power averaging techniques to structural data
acquired from sample core. Caine & Forster (1999) computed
large-scale permeabilities for a number of stochastically gener-
ated brittle fault zones embedded within low permeability
matrix. Walsh et al. (1998) and Manzocchi et al. (1999) devel-
oped correlations for fault thickness and cross-fault per-
meability, which can be used to compute cross-fault
transmissibility for use in flow simulators. In more recent
papers, Harris et al. (2002) applied the methods to a particular
case study in the North Sea and Manzocchi et al. (2002)
extended these approaches to address the effects of two-phase
flow. A large number of studies have addressed the calculation
of the effective permeability of fractured systems. Recent work
within the context of reservoir simulation includes the studies
of Nakashima et al. (2000), Lee et al. (2001), Couples et al. (2003)
and references therein. The work described here differs from
previous studies in that it begins with highly detailed outcrop
characterizations. From these descriptions, coarse simulation
models are generated to describe flow in the fault zone and the
impact of various boundary conditions on the accuracy of these
models is tested. In addition, transport through the fault zone is
considered and the difficult problem of accurately capturing
fault-parallel displacements in coarse models is addressed.

The paper proceeds as follows. The governing equations and
the various boundary conditions to be tested for upscaling are
described first. A simple, idealized permeability field is then
considered and equivalent permeabilities are computed using
the different boundary conditions. The boundary conditions are
then applied to more complicated permeability fields that occur
in the vicinity of a fault. The use of power averaging for
representing the overall fault zone permeability for a range of
fault slips is briefly considered. The paper then describes the
modified upscaling procedure in which the dominant through-
going features of the fault zone are explicitly represented while
the remaining elements of the fault zone are upscaled. The
efficacy of this procedure is demonstrated using a detailed fault
zone model.

FLOW EQUATIONS AND BOUNDARY
CONDITIONS

Single-phase, steady-state incompressible flow through a po-
rous medium is described by Darcy’s law and the continuity
equation:

u = � 1
µk · �p, (1)

� · u = 0, (2)

where u is the Darcy velocity vector, p is pressure, µ is the fluid
viscosity, and k is the permeability tensor. Equations (1) and (2)
are used to model flow for both the fine and coarse scales,
though for the coarse-scale the equivalent or upscaled per-
meability tensor, k*, replaces the fine-scale permeability, k. In
this work, the coarse-scale permeability is computed from the
underlying fine-scale description by solving a local fine-scale
problem. This local problem involves the region of the fine-
scale model corresponding to a single coarse-scale block. To
determine k* from this local solution, equations (1) and (2) are
solved over the local domain and the fine-scale results are

post-processed as described below. In some cases, k* is
computed over the entire fine-scale region. This corresponds to
upscaling the fine-scale description of the fault zone to a single
coarse block.

In the numerical computations a standard finite-difference
method is applied, with intercell transmissibilities computed via
weighted harmonic averages. The different boundary con-
ditions and post-processing procedures used to compute the
upscaled permeabilities are now described. One should note
that upscaling methods that apply global flow information also
exist (e.g. Holden & Nielsen 2000; Chen et al. 2003) and may be
suitable for the problem under study, though no such methods
were investigated in this work.

Pressure–no-flow boundary conditions

The simplest boundary condition that is applied is that of
pressure–no-flow (Fig. 1a). The flow problem is solved first in
the x-direction and then in the y-direction. In the case of the
x-direction solution, the pressure is prescribed as p=1 on the
left edge and p=0 on the right edge, with no-flow conditions on
the other two boundaries. The opposite scenario is used to
solve for flow in the y-direction. The equivalent permeability,
k*, is calculated from these two solutions. Choosing the x- and
y-axes to align with the principal directions of the permeability
tensor (i.e. neglecting the cross-terms kxy

* and kyx
* ), the kxx

*

component can be computed using the following relationship:

kxx
* =

Qxµ Lx

Ly�p
(3)

Fig. 1. Boundary condition examples. (a) Pressure–no-flow bound-
ary condition. (b) Periodic boundary conditions. (c) Mirror-periodic
boundary conditions.
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where Qx is the total flow-rate through the system computed at
the outlet edge, Lx and Ly are the system dimensions, and �p

is the pressure difference in the x-direction. The kyy
* component

is obtained using a variant of equation (3), with the pressure
difference and total flow now in the y-direction. Note that this
method applies outlet averaging to compute k* from the
fine-scale solution. This was the method used to calculate k* for
the fault zones studied by Jourde et al. (2002).

When the principal directions of permeability are unknown,
a more general approach for the determination of k* is
required. In this case the outlet average described above is
inadequate since the permeability cross-terms are assumed to be
zero. Pressure–no-flow boundary conditions can still be used,
but the full tensor, k*, must be computed using a modified
procedure for the post-processing of the two sets of fine-scale
results. Specifically, one applies the following relationship
(Wu et al. 2002; Wen et al. 2003) to determine k*:

^u& = � 1
µk* · ^�p&, (4)

where ^u& and ^�p& are area (in two dimensions) or volume
(in three dimensions) averaged Darcy velocity and pressure
gradient. In two dimensions, there are four components of k*

to be determined. Equation (4) represents four equations
because two fine grid problems are solved and each involves
two components of ^u& and ^�p&. Thus, the system is fully
specified. Symmetry for k* can be enforced in several different
ways. The simplest approach is to set the cross-terms equal to
the average of the computed kxy

* and kyx
* . An alternative

procedure that enforces symmetry via a least-square approach is
described in Wen et al. (2003).

Periodic boundary conditions

Periodic boundary conditions represent the region of interest as
though it were infinitely repeated over the modelling domain. A
portion of the periodic repetition of the permeability field
referred to above is illustrated in Figure 1b. Periodic boundary
conditions equate flow on one side of the domain to that on
the opposite side of the domain. Specifically, one sets ux

~x=0,y!=ux~x=Lx,y! and uy~x,y=0!=uy~x,y=Ly!. Boundary press-
ures are specified to contain similar correspondences, though a
jump, which drives the global flow, is prescribed in each of the
coordinate directions in turn. The upscaled permeability tensor,
k*, is then computed from the local fine grid solutions using
equation (4). Due to the properties of periodic boundary
conditions, the identical k* can also be computed using the
outlet average information. See Durlofsky (1991), Pickup et al.
(1994) and Wen et al. (2003) for further details on periodic
boundary conditions, as well as Lee et al. (2001) and Nakashima
et al. (2000) for their application in the upscaling of fractured
systems.

Mirror-periodic boundary conditions

As can be seen below, periodic boundary conditions can act to
break the connectivity of large-scale permeability features (Fig.
1b). Alternative boundary conditions can be applied in an
attempt to maintain this connectivity. Here, the paper considers
a mirroring procedure in which the local domain of interest is
reflected around each of its four edges (in two dimensions)
(Fig. 1c). If this process is repeated, a periodic domain
containing the original model plus its reflections is generated.
This procedure ensures the connectivity of large-scale features,
but their orientations are distorted in the replicated domains.
This type of approach was taken by Martys et al. (1999) in flow

simulations of three-dimensional pore space models in order to
enforce pore connectivity across the domain boundaries.

Mirror-periodic boundary conditions are applied here by first
reflecting the domain in the y-direction and then reflecting this
‘doubled domain’ again in the x-direction (Fig. 1c). Periodic
boundary conditions are then applied to the extended domain
(red box, Fig. 1c). A portion of the periodic repetition of this
mirrored domain is shown in Figure 1c.

COMPARISON OF BOUNDARY CONDITIONS FOR
AN IDEALIZED SYSTEM

Ideally, the computed k* for a given permeability field should
be nearly the same regardless of the boundary conditions used
for upscaling. In practice, however, upscaled permeabilities
computed for heterogeneous permeability fields display some
degree of dependence on the assumed boundary conditions. In
many cases this dependence is not practically significant, even
though quantitative differences between the resulting upscaled
permeabilities might be evident. In other cases, for example in
calculations involving flow in a fault zone, the assumed
boundary conditions can have a large effect on the upscaled
description.

As an example of the variation in k* computed with different
boundary conditions, the permeability field shown in Figure 1 is
considered. This idealized permeability field is characterized by
a through-going, high-permeability layer (100 mD) embedded
within a low-permeability layer (0.1 mD), both of which are
orientated 20� from the vertical and imbedded within an
intermediate-permeability matrix (10 mD). Two non-through-
going, low-permeability features (0.1 mD) also appear isolated
within the matrix.

Permeability tensors calculated for this field using the various
upscaling techniques and boundary conditions are shown in
Figure 2. The upscaled permeability tensors k* for the domains
shown in Figures 1a and 1c (red box) calculated using equation
(3) and pressure–no-flow boundary conditions are both repre-
sented by the axis-aligned tensor shown in Figure 2a. Using
equation (4) and mirror-periodic boundary conditions to model

Fig. 2. Permeability tensors for the permeability field shown in
Figure 1 calculated using the various boundary conditions. (a) Outlet
averaged pressure – no-flow, and area averaged mirror-periodic
boundary condition results. (b) Area averaged pressure – no-flow
and target domain mirror-periodic boundary condition results. (c)
Periodic boundary condition results.
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flow over the entire mirrored domain shown in Figure 1c (red
box) similarly leads to the tensor shown in Figure 2a. The
symmetry of the mirror-periodic model results in a no-flow
condition on the mirror boundaries which, in turn, yields the
identical flow solution to that computed for the standard
pressure–no-flow simulation. Furthermore, both the pressure–
no-flow model and the mirror-periodic model computed over
the target domain (Fig. 1c, blue box) using equation (4) (Fig.
2b) yield the same tensor. Because these two boundary con-
ditions will always yield identical results, attention is focused
only on pressure–no-flow conditions in subsequent discussions.

The k* calculated using equation (4) and periodic boundary
conditions yields a tensor with less contrast between the
principal values than those calculated with the pressure–no-
flow results (Fig. 2c). This is due to the fact that the highest and
lowest permeability features are disrupted across the period-
ically reproduced domains (see Figure 1b), which results in the
loss of connectivity of these important features. In the resulting
calculation of k* for this system, matrix flow dominates. These
similarities and dissimilarities between boundary conditions are
also reflected in the streamlines shown in Figure 3.

In light of the results presented above, it is useful to consider
scenarios where one boundary condition would be more
appropriate than the other. Two fracture geometries are shown
in Figure 4, a left-stepping en echelon fracture set (left) and a
single, through-going fracture (right). The fractures have high
permeability (kf) relative to the matrix (km). The paper consid-
ers upscaling these models to 3�3 grids, focusing on predict-
ing global flow in the y-direction, Qy. Using pressure–no-flow
boundary conditions for the local simulations, kyy

* for the three
central blocks reflects the high permeability of the fractures
because each of the cells contains a locally through-going
fracture (Fig. 4b) for either of the original fracture geometries.
In the case of periodic boundary condition simulations, kyy

* for
the three central blocks reflects the low permeability of the
matrix (Fig. 4c) because periodic repetition of the local domains
disconnects the fractures, thereby reducing significantly the
effects of high fracture permeability.

The global flow, Qy, for the en echelon fracture geometry
should reflect the low-permeability matrix due to the discon-
nected nature of the fractures and the lack of communication
between them. By contrast, Qy for the through-going fracture

Fig. 3. Streamline maps for the permeability fields shown in
Figure 1. Streamlines for pressure no-flow (red) and mirror-periodic
boundary condition simulations for the (a) x- and (c) y-directions.
Streamlines for periodic boundary condition simulations for the (b)
x- and (d) y-directions.

Fig. 4. Schematic example illustrating the effects of boundary
conditions used to compute k*. Dark colours indicate high per-
meability, while light colours indicate low permeability. (a) En echelon
stepping fractures (left) and a single, through-going fracture (right).
(b) 3�3 vertical upscaling using pressure–no-flow boundary
conditions. (c) 3�3 vertical upscaling using periodic boundary
conditions. (d) Global Qy for both domains.
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model should reflect the permeability of the fracture itself.
Periodic boundary conditions are therefore more appropriate
for naturally disconnected fracture geometries or for connected
geometries where the local domain is chosen such that connec-
tivity is preserved, while the pressure–no-flow boundary con-
ditions are more appropriate for through-going fracture
geometries (Fig. 4d). This demonstrates that the appropriate-
ness of a local boundary condition depends on the larger-scale
connectivity of the dominant fault zone features. In the next
section, the effects of boundary conditions on upscaled quan-
tities are further explored by examining permeability fields that
occur in the vicinity of a fault zone.

APPLICATION TO FAULT ZONE UPSCALING

The faults studied were formed by shearing along pre-existing
joint zones in the Aztec sandstone located in the Valley of Fire
State Park, southern Nevada. The details of this faulting style
are discussed by Myers (1999), Davatzes & Aydin (2003) and
Flodin & Aydin (2004). In subsequent calculations attention is
focused on an outcrop map of a portion of a fault with about
14 m of left-lateral slip (Fig. 5).

The fault shown in Figure 5 consists of five structural
elements, each of which exhibits a characteristic permeability.
The elements are joints, sheared joints, deformation bands,
fault rock and slip surfaces, all of which are embedded within
undeformed host rock. Assignment of permeability to each of
the elements is discussed by Myers (1999) and Jourde et al.
(2002). Here, representative values are applied to each of the
fault elements. Fault rock, sheared joints and deformation
bands are assigned a permeability of 0.1 mD. Permeability for
joints and slip surfaces are calculated using a parallel-plate
model with an aperture of 0.25 mm. Finally, host rock is
assigned a permeability of 200 mD.

Three regions were chosen from the fault zone shown in
Figure 5a for further investigation. For each of the three
regions, three upscaling methods are evaluated: (1) pressure–
no-flow, with k* computed from the outlet average (no-flow
outlet); (2) pressure–no-flow, with k* computed from the area
average (no-flow area); and (3) periodic boundary conditions.
The first region is extracted from the fault damage zone (Fig.
5a) and is characterized by the occurrence of variably orientated
structural elements (joints and sheared joints) that do not form
a connected network at the larger scale (Fig. 5b). Results for the
simulations of this permeability field using the three different
boundary conditions are presented in Table 1. Principal values
of permeability calculated using no-flow (with area averaging)
and periodic boundary conditions are in qualitative agreement.
The no-flow outlet result deviates from the other two results
because the cross-terms are implicitly assumed to be zero. As
such, this result does not reflect the 26–30� orientation of k*.
The periodic and no-flow area results are in fair agreement
because the permeability field in this case lacks dominant
through-going features.

The second region is from an area selected from the fault
core (Fig. 5a) and is characterized by a through-going low-
permeability fault rock zone with associated through-going
high-permeability slip surfaces (Fig. 5c). In the immediate
periphery of the fault rock is a dense network of joints, sheared
joints and deformation bands. No-flow area and no-flow outlet
calculations of k1 yield nearly identical results, while the
periodic boundary condition result is over a factor of two less
than the no-flow calculations (Table 1). In all three cases, nearly
all of the flow in the k1 direction is focused along the
through-going slip surfaces, a high-permeability pathway. For
the k2 direction, all methods yield the same results because of

the presence of the through-going low-permeability fault rock.
Because the two dominant low and high-permeability features
are aligned with the y-axis, the cross-terms are negligible and the
principal directions of k* are aligned with the coordinate system
(Table 1). This explains the close agreement between the
no-flow outlet and no-flow area results. For this case, the
calculation with periodic boundary conditions gives lower
values for k1 because the large-scale connectivity is not main-
tained due to mismatches at the domain boundary.

The third region is a 15� counterclockwise-rotated version of
approximately the same fault core region used in the second
example (Fig. 5a). This example (detailed in Figure 5d) shows
the greatest difference in results between the no-flow and
periodic boundary condition simulations. The principal perme-
abilities for both no-flow methods are in relatively good
agreement, although the no-flow outlet result does not recover
the 15� counterclockwise rotation of the model domain (Table
1). Compared to the no-flow results, k1 for the periodic
boundary condition result is nearly a factor of two less, while k2

Fig. 5. (a) Map of a sheared joint fault with 14 m left-lateral offset
(after Myers 1999). (b) Sub-region chosen from the fault damage
zone. Model dimensions are 400�400. (c) Sub-region chosen from
the fault core. Inset black box is the region shown in Figure 7a.
Model dimensions are 500�500. (d) 15� counterclockwise-rotated
version of the sub-region shown in (c). Model dimensions are
500�500.
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is more than an order of magnitude greater. This is due to the
fact that, in the periodic domain, the low-permeability fault
rock no longer forms a lateral barrier and flow is allowed a
window through the fault core. Also, the presence of a high
concentration of joints on the top right side of the fault (red
lines in Fig. 5d) appears to juxtapose the damage zone between
the fault core in the original and the periodically imaged block.
This leads to the anomalously high k2 value and the greater
rotation of the principal directions.

POWER AVERAGING METHODS

Before describing the partial upscaling approach for improving
the accuracy of coarse-scale models of the fault zone, the
application of power averaging techniques (Deutsch 1989) for
the representation of fault zone permeability is briefly consid-
ered. The use of power averaging methods to estimate upscaled
permeability of a fault zone containing joints (volume fraction
Vj and permeability kj), fault rock (volume fraction Vfr and
permeability kfr) and host rock (volume fraction Vh and
permeability kh) was first considered by Myers (1999). The
upscaled permeability is computed via:

ki
* = ~Vjkj

�i + Vfrkfr
�i + Vhkh

�i!
1/�i, (5)

where ki
* is the upscaled permeability in the direction i (i=x, y)

and �i is the power averaging exponent (which can vary with
direction).

The power averaging exponent is generally determined by
tuning to numerical results (e.g. Flodin et al. 2001). This study
attempted to tune �i to reproduce k* computed in the previous
section. Accurate results were difficult to achieve, however,
because equation (5) is unable to distinguish between con-
nected and disconnected features of the type shown in Figure 4.
Consider, for example, two models that have the same fraction
of joints, fault rock and host rock, with one model containing
large-scale joint connectivity while the other one does not.
Equation (5) cannot capture this important distinction because
both models have the same volume fractions of the various
structural components. This limits the applicability of the
power averaging procedure for models of this type. This
restriction limitation is somewhat analogous to the variation in
k* with boundary conditions illustrated in the previous section.

Rather than use a power averaging procedure to estimate k*

for small regions of the fault zone, its applicability for estimat-
ing large-scale fault zone permeability is illustrated. Data for the
14 m slip fault example (Fig. 5) are supplemented with ad-
ditional data for a smaller fault with 6 m and a larger fault with
150 m of slip that were described by Myers (1999). As indicated
previously, Jourde et al. (2002) computed the upscaled fault

zone permeabilities for these models using pressure–no-flow
boundary conditions and outlet averaging. In these systems, the
large-scale fault zone permeability is nearly aligned with the
fault orientation. Therefore, the principal values of k* provide
fault-parallel and fault-normal permeabilities.

Table 1. Upscaling results for the maps shown in Figures 5b–c.

Input map Boundary condition Principal permeability

k1 k2 �

Fault damage
zone (Fig. 5b)

no-flow outlet 1026.4 210.5 —
no-flow area 1708.8 154.0 26.8

periodic 1250.6 184.1 30.0

Fault core
(Fig. 5c)

no-flow outlet 4274.8 4.9 —
no-flow area 4267.7 4.9 �0.29

periodic 1740.1 4.9 0.22

Fault core – 15�
counterclockwise

no-flow outlet 3552.1 5.5 —
no-flow area 4298.9 4.5 14.7

periodic 2309.7 229.6 32.9

Fig. 6. Comparison of power average and numerical simulation
upscaling results for (a) along-fault and (b) cross-fault permeability.
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For the fault parallel direction (ky
*), flow is dominated by

connected high-permeability features. For all of the fault data, a
value of �.y=0.61 provided the best correspondence between
numerical and power averaging results for along-fault flow (Fig.
6a). The data are, however, clustered over a relatively small
range, so one cannot assess the limits of applicability of this �y.
For flow in the fault perpendicular direction (kx

*), results are
dominated by the presence of low-permeability fault rock. In
this case, a value of �x=�0.53 provided the best correspon-
dence between numerical and power averaging results (Fig. 6b).
Although numerical results can be expected to provide better
accuracy, these power average estimates for k* might be
adequate for some applications.

EXPLICIT FRACTURE MODELLING

The results from the section on ‘Application to fault zone
upscaling’ illustrate that the upscaled permeabilities of fault
zones can be highly dependent on the boundary conditions
used for the k* calculation. These ambiguities result when one
tries to ‘homogenize’ dominant through-going features. This
sensitivity to boundary conditions is, perhaps, not surprising
since homogenization theory, on which many upscaling pro-
cedures are based, requires that the relevant heterogeneities be
small relative to the size of the upscaled region. This require-
ment is clearly violated in the models presented here. For this
reason, the notion of explicitly representing the dominant
through-going high-permeability features in otherwise upscaled
fault permeability models is now explored.

This ‘partial upscaling’ procedure is as follows. First, the
high-permeability, connected and through-going features are
removed from the fine-scale fault permeability field. In practice,
these features could be identified through preprocessing of the
fine-scale data using a single phase flow calculation (analogous
to the identification of high flow regions in Durlofsky et al.
1997) or via a consideration of the connectivity of the fracture
network (e.g. Jing & Stephansson 1997). Following extraction
of the through-going features, the rest of the model is upscaled
to a coarse grid. Finally, the high-permeability features are
reintroduced back into the coarsened model.

This approach shares some similarities with previous tech-
niques. For example, Lee et al. (2001), in their modelling of flow
in fractured reservoirs, introduced a three-step methodology.
They first derived an analytical solution to account for the
permeability influence of the shortest fractures and then applied
a numerical boundary element method to upscale the medium-
length fractures. Finally, they then explicitly modelled the
longest fractures within the background permeability field
obtained in the previous two steps. The methodology here
differs from that in Lee et al. (2001) in that our study explicitly
models the slip surfaces using fine grids within the coarsened
model, similar to the non-uniform coarsening approach of
Durlofsky et al. (1997). Lee et al. (2001), by contrast, represented

the large fractures using a treatment analogous to that applied
for the modelling of wells in finite-difference procedures.

The methodology is now applied to an example fault zone
and the accuracy tested by comparing global flow-rates and oil
cut (fraction of oil in the produced fluid) between a fine-scale
model and the upscaled models. The case is considered where
the in situ fluid (oil) and the injected fluid (water) have the same
viscosity and the relative permeability of each phase is linear in
the phase saturation. These simplifications result in a system in
which the global flow-rate does not change in time. In addition,
the breakthrough behavior of the injected fluid and, thus, the
oil cut, can be readily calculated from the global pressure
solution. See Durlofsky et al. (1997) for a detailed description of
these calculations.

A 300�300 cell sub-region selected from the fault map
shown in Figure 5c is considered (Fig. 7a). In the first step, the
through-going slip surfaces are removed from the fine-scale
fault map (Fig. 7b) and then upscaled to a coarse grid. For the
local upscaling problem, no-flow boundary conditions are used
and k* is computed using the outlet average. To test the
robustness of the upscaling, four different grid coarsenings are
applied: 50�50, 30�30, 10�10 and 3�3. The resulting
upscaled permeability fields are shown in Figures 8a–d. Finally,
a single, uniform slip surface is reintroduced to the central
portion of the upscaled models.

The properties and dimensions of the uniform slip surface
are calibrated to the original fine-scale model. This is accom-
plished by matching global flow-rates between the original
fine-scale model and the modified fine-scale model with the
single uniform slip surface (Fig. 7c, Table 2). Replacing
the original slip surfaces with the uniform slip surface in the
fine-scale model is done simply for numerical convenience.
Specifically, the finite-difference code applied in this study uses
Cartesian grids, so slip surfaces not aligned with a coordinate
direction could not be accurately modelled on coarse grids.
The uniform slip surface in the modified fine model is,
therefore, aligned with the y-axis. Note that this step might not
be necessary if one applies unstructured grid techniques or
a general nine-point finite-difference method capable of
accurately treating non-orthogonal grid effects.

Comparisons of global flow results between the variously
upscaled models (with the reintroduced uniform slip surface)
are shown in Table 2. Flow rates in the y-direction are in fair
agreement (all within 18% of the fine-grid result; see Table 2)
between all of the tested models. However, for flow in the
x-direction, the upscaled models differ from the fine model by
as much as 50%. In the 50�50 case, the x-flow was overesti-
mated, while in the other cases it was underestimated (Table 2).
These discrepancies are likely to be due to permeability changes
in the fault periphery of the upscaled models. In the coarser
models (30�30 and coarser), high flow features that were
locally continuous in the fine model were rendered discontinu-
ous in the coarsened model, resulting in lower values of Qx.

Fig. 7. (a) Sub-region of the fault core
shown in Figure 5c. (b) The same
region shown in (a) without the
through-going slip surfaces. (c) The
same region shown in (b) with a
uniform 13-pixel wide slip surface
added. All regions have model
dimensions 300�300.
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In the 50�50 model, by contrast, continuity of high-
permeability features was enhanced.

To test the transport properties of the upscaled models, the
study simulates the outlet oil cut (Fo) in an oil–water system, as
a function of pore volume injected (pvi=Qt/Vp, where t is time
and Vp is the total pore volume of the system). As indicated
above, it is assumed that oil and water have the same viscosity
and that the relative permeability of each phase is linear in the
phase saturation. For flow in the x-direction (fault-
perpendicular flow), the finer upscaled models match more
closely the flow behaviour of the original model (Fig. 9a). This
is likely to be due to the increasing loss of connection of
high-permeability joints in the fault periphery (cf. Fig. 5a) with
increasing coarsening, which was similarly noted in the global
flow calculations.

All of the upscaled models adequately reproduced the initial
breakthrough behaviour of the fine-scale models for flow in the

y-direction (fault-parallel flow), as illustrated in Figure 9b. Note
that this breakthrough occurs at a very early time (c. 0.05 pvi).
Also shown on the fractional flow curves is the result for a
1�1 globally upscaled region. In this case, the permeability is
homogeneous and breakthrough occurs at 1 pvi. This indicates
that, although the total flow-rate can be adequately matched
using a single global value for k*, the transport behaviour
cannot. However, as indicated by the above results, the

Fig. 8. Upscaling results for coarse models of different dimensions
using local pressure–no-flow boundary conditions and the input map
shown in Figure 7b (slip surfaces removed).

Table 2. Global flow characteristics for the permeability field shown in Figures 7a, 7c and 8a–d

Input model Dimension Global

Qx Qy

Original with uniSS (Fig. 6c) 300�300 1.16 6574.9
Coarsened model (Fig. 7a) with added uniSS 50�50 1.74 7025.7
Coarsened model (Fig. 7b) with added uniSS 30�30 0.90 6777.1
Coarsened model (Fig. 7c) with added uniSS 10�10 0.85 7766.1
Coarsened model (Fig. 7d) with added uniSS 3�3 0.76 7016.2

uniSS, uniform slip surface.

Fig. 9. Oil cut (Fo) versus pore volume injected (pvi) at the outlet
edge for (a) cross-fault and (b) along-fault flow. Uniform slip surface
reintroduced to all models.
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transport properties can be greatly improved through the
reintroduction of the slip surfaces, even when the model is
otherwise very coarse.

The two-step partial upscaling–explicit fracture modelling
approach presented here can be extended in a number of useful
directions. Most notably, it can be coupled with recent discrete
fracture modelling techniques that utilize unstructured grids
(e.g. Granet et al. 2001; Karimi-Fard et al. 2003) to provide a
highly efficient and general overall model.

CONCLUSIONS

In this paper, different approaches for upscaling detailed
descriptions of fault zones were investigated. In particular, the
effects of the choice of boundary conditions and post-
processing procedure were focused upon. A partial upscaling
technique for including the effects of high-permeability,
through-going features in coarsened models was also described.
A number of conclusions can be drawn from this work.

1. The choice of pressure–no-flow, periodic and mirror-
periodic boundary conditions applied to fault permeability
upscaling was shown to influence the calculated results in
many cases. Pressure–no-flow conditions are more appro-
priate for capturing the effects of large-scale through-going
fractures, while periodic boundary conditions are more
applicable for disconnected fracture geometries.

2. Power averaging procedures were tuned to capture large-
scale fault-parallel and fault-normal permeabilities. The
power averaging approach was found to be less suitable for
the calculation of smaller-scale grid block permeabilities.

3. A partial upscaling technique, in which high-permeability
through-going features (e.g. slip surfaces) were modelled
explicitly and the remainder of the system was upscaled, was
shown to be well suited for the coarse-scale representation
of the fault zone. Using this approach, the coarse model is
able to predict both total flow-rate as well as transport
behaviour (e.g. oil cut).
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